

Inorganica Chimica Acta 223 (1994) 63-69

The reactions of thiolate ligands with rhenium hydrides Part 1. The syntheses and structures of [ReO(SC₆H₃-2,6-Me₂)₃(PPh₃)] and [Re(SC₆H₃-2,6-Me₂)₃(PPh₂H)(PPh₃)]

Jonathan R. Dilworth^{a,*}, Jin Hu^a, Shi-Xiong Liu^{b,1}, Judith A.K. Howard^b, David C. Povey^c

"Department of Chemistry and Biological Chemistry, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK ^bSchool of Chemistry, University of Durham, South Road, Durham, DH1 3LE, UK ^cDepartment of Chemistry, University of Surrey, Guildford, Surrey GU2 5XH, UK

Received by Editor 22 April 1993; received by Publisher 14 April 1994

Abstract

A controlled substitution reaction of [ReOCl₃(PPh₃)₂] with DMT (DMT = 2.6-dimethylbenzenethiolate) was achieved using Me₃SiDMT to give [ReO(DMT)₃(PPh₃)] (I). The same complex was obtained from [ReH₇(PPh₃)₂] and the disulfide of DMT, but [Re(DMT)₃(PPh₃)(PHPh₂)] (IV) was isolated from the reaction of [ReH₇(PPh₃)₂] with HDMT. X-ray diffraction studies show that both compounds have a distorted trigonal bipyramidal geometry. Crystal data: I: C₄₂H₄₂OPS₃Re, M_r = 876.1, monoclinic, space group $P2_1/n$, a = 11.842(6), b = 19.164(8), c = 17.368(7), Å, $\beta = 104.01(4)^\circ$, V = 3824(3) Å³, Z = 4, R = 0.342 ($R_w = 0.394$) for 4156 unique data having $F > 5\sigma(F)$; IV: C₅₄H₅₃P₂ReS₃, $M_r = 1045$, monoclinic, space group $P2_1/n$, a = 11.014(4), b = 23.064(4), c = 19.017(5) Å, $\beta = 97.00(2)^\circ$, V = 4795(2) Å³, Z = 4, R = 0.060, $R_w = 0.084$, for 4705 independent observed reflections having $F > 3\sigma(F)$.

Keywords: Crystal structures; Rhenium complexes; Oxo complexes; Thiolato complexes

1. Introduction

In an earlier publication, we reported the reaction of [ReOCl₃(PPh₃)₂] with an excess of a variety of sterically hindered thiolate anions in methanol to give the unreactive anions $[ReO(SAr)_4]^-$ [1] (SAr = 2,4,6triisopropylbenzenethiolate (TIPT), 2,4,6-trimethylbenzenethiolate (TMT), 2,6-diisopropylbenzenethiolate (DIPT), 4-bromo-2,6-diisopropylbenzenethiolate (BIPT)). All have square pyramidal coordination with an apical oxo group [1]. The reactions proceeded with complete substitution of all the chloride ligands around Re except the oxo group and no intermediate product could be isolated despite intensive efforts. Here we report the synthesis of the oxo complex, $[ReO(DMT)_3(PPh_3)]$ (I) (DMT = 2,6-dimethylbenzenethiolate) from the reaction of $[\text{ReOCl}_3(\text{PPh}_3)_2]$ with trimethylsilyl-2,6-dimethylbenzenethiolate (Me₃SiDMT). The reactivity of this trithiolato—oxo complex is much greater than that of $[\text{ReO}(\text{SAr})_4]^-$ (SAr = TIPT, DMT, BIPT) [1]. Alternatively $[\text{ReO}(\text{DMT})_3(\text{PPh}_3)]$ can be prepared from the oxidative reaction of $[\text{ReH}_7(\text{PPh}_3)_2]$ with RSSR (SR = DMT) in methanol. However, the employment of HDMT instead of its dimer RSSR led to the unexpected formation of the Re(III) complex $[\text{Re}(\text{DMT})_3(\text{PPh}_3)(\text{PHPh}_2)]$, the formation of PHPh₂ occurring by the unusual cleavage of a P–C(Ph) bond.

2. Experimental

2.1. Materials and methods

All manipulations were performed under dry nitrogen using standard Schlenk and vacuum-line and syringe techniques unless stated otherwise. 1,1,1,3,3,3-Hexamethyldisilazane was purchased from Aldrich and used

^{*}Corresponding author.

¹Permanent address: Department of Chemistry, Fuzhou University, Fuzhou, Fujian, P.R. China, previously Royal Society visitor at School of Chemistry, University of Bristol.

without further purification. [ReOCl₃(PPh₃)₂] [2] and [ReH₇(PPh₃)₂] [3] were prepared by the literature procedures. Elemental analyses were performed by Medac Ltd., University of Brunel. IR spectra were recorded as nujol mulls (NaCl plates) on a Perkin-Elmer 1330 IR spectrophotometer. ¹H and ³¹P{¹H} NMR spectra were recorded on an EX-270 JEOL (270 MHz) NMR spectrometer. FAB-MS spectra were obtained from the SERC facility at University College Swansea.

2.2. Preparation of $Me_3Si(DMT)$

Two equivalents HDMT (2 ml, ~14.47 mmol) with 1 equiv. of 1,1,1-3,3,3-hexamethyldisilazane (1.53 ml) were heated at 120 °C until evolution of NH₃ ceased to give colourless Me₃Si(DMT). ¹H NMR (ppm): δ 0.29 (s, 9H, CH₃-Si), 2.53 (s, 6H, 2,6-CH₃Ph), 7.00–7.15 (m, 3H, SC₆H₃).

2.3. Synthesis of $[ReO(DMT)_3(PPh_3)]$ (I)

Method A. $[ReOCl_3(PPh_3)_2]$ (0.25 g, 0.3 mmol) in toluene was treated with Me₃Si(DMT) (0.13 ml, ~ 0.6 mmol) and stirred at 45-55 °C for 4 h. Toluene was removed under reduced pressure. The resulting green residue was recrystallised from MeOH/CH₂Cl₂ under N_2 atmosphere. The green crystals of an $[ReO(DMT)_3(PPh_3)]$ are stable in the air, although they decompose in solution in air. Yield 42.3%. Anal. Calc. for C₄₂H₄₂OPReS₃: C, 58.4; H, 4.9. Found: C, 57.3; H, 5.0%. IR (cm⁻¹): ν (ReO) 935. ¹H NMR (CHCl₃) (ppm): δ 1.181 (s, 3H, Me), 1.54 (s, 3H, Me), 1.62 (s, 3H, Me), 2.02 (s, 3H, Me), 2.26 (s, 3H, Me), 2.46 (s, 3H, Me), 7.38 (br s, 12H, Ph₃P), 7.96 (br s, 3H, SC₆H₃), 6.18-7.18 (m, 9H, PPh₃). ³¹P NMR (ppm): δ 16.16 (s, PPh₃). FAB-MS(+) m/z: 876.17 (M^+), 739 $(M^+ - DMT)$, 614 $(M^+ - Ph_3P)$, 476 $(M^+ - DMT)$ $-Ph_{3}P-H^{+}$).

Method B. $[\text{ReII}_7(\text{PPh}_3)_2]$ (0.2 g, 0.28 mmol) and RSSR (RS=DMT) (0.077 g, 0.28 mmol) in absolute ethanol (20 ml) were stirred at room temperature for 2 days, then stored at -20 °C for several days to produce a green precipitate. IR shows it to be the same product as that from Method A. Yield 53%.

2.4. Reaction of I with PPh₃ to give $[Re(DMT)_3-(MeCN)(PPh_3)]$ (II)

Compound I (0.2 g, 0.2 mmol) in MeCN (20 ml) with excess Ph₃P (0.5 g) was heated under reflux for 6 h. Then it was allowed to cool down to room temperature. The purple precipitate of [Re(DMT)₃-(MeCN)(PPh₃)] (II) was recrystallised from CH₂Cl₂/EtOH. Anal. Calc. for C₄₄H₃₅NPRe: C, 58.6; H, 5.0; N, 1.6. Found: C, 58.5; H, 5.0; N, 1.7%. IR (cm⁻¹): ν (C=N) 2260. ³¹P NMR (ppm): δ 20.09 (s, PPh₃). ¹H

NMR (ppm): δ 1.55 (s, 3H, CH₃CN), 1.93 (s, 18H, (CH₃)₂Ar), 6.80–7.82 (m, 24H, ArH).

2.5. Reaction of complex I with excess of DMT

[ReO(DMT)₃(PPh₃)] (0.2 g, 0.26 mmol) was reacted with HDMT (0.036 g, ~0.04 ml, 0.26 mmol) and Et₃N (0.04 ml) in EtOH (25 ml) under reflux. After 30 min, the solution was cooled and excess [Ph₄P]Br was added to give brown [Ph₄P][ReO(DMT)₄] (III). IR (cm⁻¹): ν (Re=O) 965. ¹H NMR (ppm): δ 2.15 (s, 12H, CH₃), 2.37 (s, 12H, CH₃), 6.73–7.98 (m, 44H, ArH). ³¹P NMR (ppm): δ 26.70 (s, PPh₄⁺).

2.6. Synthesis of $[Re(DMT)_3(PPh_3)(PPh_2H)]$ (IV)

Freshly prepared [ReH₇(PPh₃)₂] (0.5 g, 0.70 mmol) in toluene (40 ml) was treated with HMDT (0.29 ml, 2.1 mmol). The solution was stirred at room temperature for two days. The resulting purple solution was evaporated to dryness in vacuo and then extracted with hexane. In time, the extract deposited purple crystals of [Re(DMT)₃(PPh₃)(PPh₂H)]. The yield varied from 21 to 0%. Anal. Calc. for C₅₄H₅₃P₂S₃Re: C, 62.0; H, 5.1. Found: C, 61.9; H, 5.0%. IR (cm⁻¹): ν (P–H) 2320. ¹H NMR: δ 1.86 (s, 3H, Me), 2.30 (s, 3H, Me), 2.48 (s, 3H, Me). ³¹P{H} NMR: δ 11.59 (d, PPh₃, J(P-P) 254.9 Hz), -11.745 (d, PHPh₂, J(P-P) 254.9 Hz). The colour of the hexane extract solution changed rapidly from purple to green due to oxidation. The residue left from the hexane extraction was recrystallised from toluene-hexane to give the complex $[Re(DMT)_3(PPh_3)]$ in $\sim 60\%$ yield. The full details of the last complex which has an agostic interaction between the metal and a methyl hydrogen will be reported elsewhere.

2.7. X-ray structure determinations for complexes I and IV

The details of the experimental procedures and crystal data for the two structures are summarised in Table 1.

3. Results and discussion

3.1. Crystal structure of I

The molecular structure of I is shown in Fig. 1 together with the atom numbering scheme. The atomic coordinates are given in Table 2, and selected angles and bond distances are given in Table 3. The overall geometry about the Re atom is best described as distorted tbp (trigonal bipyramidal, see below). The equatorial plane comprises the oxo atom and two thiolate ligands while the third thiolate and triphenylphosphine

Table 1 X-ray structural data

	$[\text{ReO}(\text{DMT})_3(\text{PPh}_3)]$	$[Re(DMT)_3(PPh_2H)(PPh_3)]$			
Solution and refinement					
System used	Siemens SHELXTL PLUS	SHELX			
Solution	direct methods	heavy atom method			
Refinement method	full-matrix least-squares	full-matrix least-squares			
Weighting scheme	$w^{-1} = \sigma^2(F) + 0.0005F^2$	$w = 1/[\sigma(F^2) + (0.04F)^2 + 4.0]$			
No. parameters refined	433				
Final R indices (obs. data) (%)					
R	3.42	6.0			
R _w	3.94	8.4			
Data collection					
Diffractometer	Siemens R3m/V	Enraf Nonius CAD4			
Radiation, λ (Å)	Mo K	<i>Κα</i> , 0.71069			
Temperature (K)		293			
Monochromator	highly oriental	ted graphite crystal			
Scan type	$\omega - 2\theta$	$\omega - \theta$			
2θ Range (°)	4.0-48.0	scan width $0.7 + 0.35 \tan \theta$			
Scan speed	variable 1.5 to 15.0 min in ω	3.33 min^{-1}			
Background measurement	stationary crystal and stationary				
	counter at beginning and end of				
	scan, cach for 25% of total scan time				
Standard reflections	3 measured every 200 reflections	3 measured every 200 reflections			
Reflections collected	6530	8171			
Observed reflections	4156 $(F > 5.0\sigma(F))$	4705 $(I > 3\sigma(I))$			
Absorption correction	semi-empirical	semi-empirical			
Crystal data					
Empirical formula	$C_{42}H_{42}OPS_3Re$	$C_{54}H_{53}P_2S_3Re$			
Colour	dark green prismatic	purple			
Crystal size (mm)	$0.44 \times 0.28 \times 0.19$	$0.4 \times 0.3 \times 0.2$			
Crystal system	monoclinic	monoclinic			
Space group	$P2_1/n$	$P2_1/n$			
Unit cell dimensions					
a (Å)	11.842(6)	11.014(4)			
b (Å)	19.164(8)	23.064(4)			
c (Å)	17.368(7)	19.017(5)			
β (°)	104.01(4)	97.00(2)			
Volume (Å ³)	3824(3)	4795(2)			
Density (calc.) (mg m^{-3})	1.522	1.593			
Absorption coefficient (mm ⁻¹)	3.449				
F(000)		A 1 A 0			

occupy the apical sites. The Re atom deviates from the equatorial S_2O plane by 0.2374 Å in a direction away from the triphenylphosphine ligand. The equatorial ligands and P-C bond of PPh₃ are staggered with torsion angles of average 162.1° (S(2)-Re-P-C(1)=169.0; S(3)-Re-P-C(7)=154.3, O-Re-P-C(13)=163.0°) to minimise steric interactions. The aryl groups of the equatorial thiolates are disposed to the side of the equatorial plane away from the bulky triphenylphosphine ligand, the angle at S(2) being considerably larger (127°) than that at S(3), 113°.

3.2. Comparison of the structure of **I** with other fivecoordinate complexes

Table 4 summarises details of the structures of a number of complexes of the type MXL_4 , where X is

a multiply bonded ligand such as oxo, nitrido, hydrazido or imido in combination with a range of other ligands. Muetterties and Guggenberger [4] have suggested the use of the shape determining dihedral angle associated with the edge opposite to the multiply bonded ligand $(0.0^{\circ} \text{ for an ideal sp and } 53.1^{\circ} \text{ for the ideal tbp})$ to define the amount of distortion from the idealised structures. Site preference and steric and electronic effects are interlinked, and together dictate the overall geometry of the complexes. A simple molecular orbital treatment of tbp structures with multiply bonded ligands [12] (Fig. 2) suggests that d^2 complexes will be marginally more stable with the oxo group in an equatorial site. However the energy differences between locating the oxo ligand in axial and equatorial sites are small, and the simple treatment neglects both the steric effects which must here be significant, and the p-donor or

Fig. 1. An ORTEP representation of the structure of $[ReO(DMT)_3(PPh_3)]$, together with a partial atom numbering scheme.

acceptor characteristics of the co-ligands. At first sight it is perhaps surprising that the bulky PPh₃ ligand should occupy an axial site, but this may reflect the tendency for p-acceptor ligands to do so, as in $[Mo(CO)_2(TIPT)_3]^-$ (TIPT=2,4,6-tri-isopropylbenzene thiolate) [13]. Nevertheless, whatever the balance of effects responsible for the observed geometry, complex I remains an unusual example of a tbp d² oxo complex.

3.3. Crystal structure of IV

The ORTEP representation of the structure of complex IV is given in Fig. 3, together with the atomlabelling scheme. The atomic coordinates are given in Table 5 and selected bond lengths and angles are given in Table 6. The overall geometry about Re is best described as trigonal bipyramidal with three equatorial thiolate ligands and axial Ph₃P and Ph₂PH groups. The bond distance for Re-P(PPh₃) (2.455(4) Å) is found to be significantly greater than that of the $Re-P(PHPh_2)$ bond (2.370(4) Å) due presumably to the bulk of the PPh₃ ligand. The equatorial thiolate ligands are orientated with one thiolate phenyl ring towards the PPh₃ and other two towards the PHPh₂, i.e. the 'two down one up' configuration [14]. Consequently the p orbitals of the thiolate sulfur atoms overlap with the $d_{r^2 \rightarrow r^2}$ or d_{xy} Re orbitals by alignment of the S–C(Ph) vectors approximately perpendicular to the equatorial plane as in compound I. Such a configuration is typical for fivecoordinate sterically hindered thiolate metal complexes with an MS₃ core in the absence of multiply bonded ligands such as oxo or nitrido. Hitherto it has been observed that in this type of structure at least one of the axial ligands has to be a small molecule such as CO or MeCN owing to the steric hindrance exerted by the equatorial thiolate ligands. By contrast, compound

Table 2

Atomic coordinates $(\times 10^4)$ and equivalent isotropic displacement factors for $[\text{ReO}(\text{DMT})_3(\text{PPh}_3)]$

	x	у	z	$U_{eq}{}^{a}$
Re	1851(1)	531(1)	2946(1)	384(1)
Р	-131(2)	966(1)	3015(1)	407(6)
S(1)	3727(2)	389(1)	2787(1)	479(7)
S(2)	879(2)	478(1)	1634(1)	492(7)
S(3)	2523(2)	1530(1)	3642(1)	549(7)
0	1644(4)	-133(3)	3541(3)	545(20)
C(1)	-121(6)	1334(4)	3980(4)	464(27)
C(2)	- 508(7)	2004(4)	4080(5)	544(31)
C(3)	-513(8)	2249(5)	4837(6)	674(38)
C(4)	-138(8)	1824(7)	5473(6)	771(44)
C(5)	265(9)	1178(6)	5378(5)	806(45)
C(6)	300(8)	939(5)	4645(5)	672(36)
C(7)	-1181(6)	248(4)	2948(4)	453(26)
C(8)	-1083(7)	- 359(4)	2559(5)	545(31)
C(9)	-1923(9)	-877(5)	2484(5)	695(38)
C(10)	-2881(8)	- 776(6)	2783(6)	768(41)
C(11)	-2962(7)	-179(6)	3183(5)	714(39)
C(12)	-2139(7)	336(5)	3273(5)	608(34)
C(13)	- 844(6)	1606(4)	2278(4)	428(25)
C(14)	-202(7)	2091(4)	2000(5)	598(32)
C(15)	-732(8)	2545(5)	1404(6)	776(41)
C(16)	-1898(8)	2537(5)	1098(6)	773(40)
C(17)	-2554(8)	2060(5)	1380(6)	834(43)
C(18)	-2035(7)	1594(5)	1961(5)	683(36)
C(19)	3951(6)	-241(4)	2082(4)	445(25)
C(20)	3682(7)	-941(5)	2150(5)	537(30)
C(21)	3910(8)	-1413(5)	1606(5)	676(36)
C(22)	4424(9)	-1193(6)	1010(6)	817(45)
C(23)	4738(7)	-510(6)	975(5)	686(36)
C(24)	4508(6)	-29(4)	1508(5)	506(29)
C(25)	3191(8)	-1224(5)	2813(5)	673(36)
C(26)	4930(7)	710(5)	1477(5)	697(38)
C(27)	1575(6)	308(4)	844(4)	483(28)
C(28)	1470(7)	-357(5)	517(5)	597(33)
C(29)	1863(7)	-471(6)	-169(5)	735(37)
C(30)	2332(8)	68(7)	-506(5)	756(44)
C(31)	2397(7)	717(6)	-189(5)	749(42)
C(32)	2015(7)	869(5)	493(5)	578(31)
C(33)	919(8)	-958(5)	852(6)	756(40)
C(34)	2021(8)	1599(6)	792(6)	833(45)
C(35)	4092(6)	1573(4)	3956(5)	516(29)
C(36)	4650(7)	1203(5)	4627(5)	558(31)
C(37)	5860(8)	1250(5)	4868(5)	737(39)
C(38)	6478(8)	1652(6)	4469(7)	830(45)
C(39)	5920(8)	2033(5)	3825(6)	773(43)
C(40)	4708(8)	2003(5)	3536(6)	685(38)
C(41)	4006(8)	758(5)	5078(5)	719(38)
C(42)	4138(10)	2397(6)	2823(7)	984(54)

^aEquivalent isotropic U defined as one third of the trace of the orthogonalized U_{ij} tensor.

IV tolerates both the bulky Ph_3P ligand together with the medium size ligand $PHPh_2$ as axial ligands. As a result, the Re–S–C(Ph) angles are straightened to some extent, due primarily to the steric forces exerted by the axial ligands. The angles Re–S–C(Ph) (122.0(6), 121.6(5), 123.6(6)) are significantly greater than the value (M–S–C(Ph) ~109–120°, mainly centred at 113°)

Table 3								
Selected	bond	lengths	(Å)	and	angles	(°)	for	[ReO(DMT) ₃ (PPh ₃)]

Bond distances			
ReP	2.521(2)	Re-S(1)	2.319(2)
Re-S(2)	2.293(2)	Re-S(3)	2.301(2)
Re-O	1.694(6)	P-C(1)	1.816(8)
P-C(7)	1.840(8)	P-C(13)	1.824(7)
S(1)-C(19)	1.786(8)	S(2)-C(27)	1.793(8)
S(3)-C(35)	1.807(7)		
Bond angles			
P-Re-S(1)	166.8(1)	P-Re-S(2)	79.2(1)
S(1)-Re-S(2)	98.1(1)	P-Re-S(3)	84.7(1)
S(1)-Re-S(3)	86.6(1)	S(2)-Re-S(3)	125.8(1)
P-Re-O	86.6(1)	S(1)-Re-O	105.6(2)
S(2)-ReO	117.5(2)	S(3)-Re-O	112.8(2)
Re-S(1)-C(19)	117.8(2)	ReS(2)C(27)	123.7(2)
Re-S(3)-C(35)	113.4(3)		

Table 4 Core geometry determining angles for MXL₄^a complexes

Complex	δ	Reference
	(°)	
Ideal square pyramid	0.0	[4]
[TcO(TMT) ₄] ⁻	0.0	[5]
[ReO(SPh) ₄]	3.8	[6]
[ReO(DIPT) ₄] ⁻	5.4	[1]
$[\text{ReO}(\text{TMT})_4]^-$	13.6	[1]
$[Mo(NNMe)_2O(SPh)_3]$	16.5	[7]
$[W(NPh)(NMe_2)_4]$	17.5	[8]
$[ReN(SC_6HMe_4)_2(HNC(NMe_2)_2)_2]$	20.2	[9]
[TcO(TIPT) ₃ py]	32.0	[10]
$[ReO(DMT)_3(PPh_3)]$	40.8	this work
$[VOCl_2(NMe_3)_2]$	53.7	[11]
Ideal trigonal bipyramid	53.1	[4]

*X=multiply bonded atom.

equatorial

Fig. 2. An interaction diagram for a cylindrically symmetrical π donor in a tbp complex. The left side represents occupation of an axial site, the right an equatorial site.

Fig. 3. The molecular structure of $[Re(DMT)_3(PPh_2H)(PPh_3)]$, together with a partial atom numbering scheme.

observed previously. The formation of the PHPh₂ ligand is thought to arise from intermediate formation of an $(\eta^{6}-C_{6}H_{5})PPh_{2}$ species and subsequent elimination of benzene [15].

3.4. Spectroscopic studies

The IR spectrum of compound I showed an Re=O stretching frequency at 935 cm⁻¹, significantly lower than that of $[\text{ReO}(\text{DMT})_4]^-$. In the ¹H NMR spectra, six distinct singlets arise from the six methyl groups of three non-equivalent DMT ligands with restricted rotation about the S-C bonds. The relative integral intensities were consistent with the stoichiometry of complex I. The FAB-MS spectrum of I exhibited a molecular ion at 876 (M^+) and fragmentation peaks at 739 $(M^+ - \text{DMT})$, 614 $(M^+ - \text{Ph}_3\text{P})$. The presence of the fragments $(M^+ - \text{DMT})$ and $(M^+ - \text{Ph}_3\text{P})$ may reflect relative weaker ligation of the axial Ph₃P and DMT ligands.

Compound II showed a medium intensity IR band at 2260 cm⁻¹ assigned to ν (C=N). One singlet at δ =20.085 ppm in the ³¹P{¹H} NMR revealed the presence of PPh₃. The methyl groups of the DMT ligands appeared as one singlet at 1.93 ppm, confirming free rotation about the C-S bonds. Relative integral intensities for the aliphatic methyl protons versus aromatic protons were consistent with the proposed stoichiometry.

The IR spectrum of complex III showed $\nu(\text{Re}=\text{O})$ at 965 cm⁻¹. Only two methyl environments were observed in the ¹H NMR. This was consistent with an

Table 5 Positional parameters and their e.s.d.s for $[Re(DMT)_3(PPh_3)(PPh_2H)]$

Atom	<i>x</i>	у	z	<i>В</i> (Ų)
Re	0.12351(5)	0.08071(2)	0.26074(3)	2.228(9)
S1	-0.0465(4)	0.0802(2)	0.1810(2)	3.20(8)
S 3	0.0866(4)	0.0644(2)	0.3731(2)	3.39(9)
S4	0.3134(4)	0.1009(2)	0.2343(3)	3.60(9)
P1	0.1403(4)	-0.0178(2)	0.2279(2)	2.77(8)
P5	0.1397(4)	0.1820(2)	0.3005(2)	2.70(8)
C1	0.023(1)	-0.0741(7)	0.2327(9)	3.4(3)
C2	0.047(2)	0.1212(9)	0.278(1)	5.4(5)
C3	-0.040(2)	-0.1638(8)	0.280(1)	6.4(5)
C4	-0.147(2)	-0.1639(9)	0.234(1)	6.5(5)
C5	-0.166(2)	-0.1179(9)	0.187(1)	6.0(6)
C6	-0.085(1)	-0.0721(8)	0.185(1)	4.8(4)
C7	0.189(2)	-0.0364(7)	0.1412(9)	3.8(4)
C8	0.143(2)	-0.0058(9)	0.081(1)	4.6(4)
C9	0.171(2)	-0.024(1)	0.014(1)	6.7(6)
C10	0.245(2)	-0.0701(9)	0.010(1)	6.8(5)
C11	0.288(2)	-0.103(1)	0.069(1)	7.9(6)
C12	0.260(2)	-0.0841(9)	0.134(1)	6.2(5)
C25	0.032(2)	0.2089(6)	0.3604(8)	3.4(4)
C26	0.073(2)	0.2458(7)	0.4174(9)	4.4(4)
C27	-0.019(2)	0.2696(9)	0.457(1)	5.3(5)
C28	0.142(2)	0.256(1)	0.440(1)	5.3(5)
C29	0.174(2)	0.216(1)	0.385(1)	6.1(6)
C30	-0.087(1)	0.1930(8)	0.3467(9)	4.0(4)
C31	0.288(1)	0.1992(7)	0.3516(9)	3.6(3)
C32	0.341(2)	0.1566(8)	0.401(1)	6.2(5)
C33	0.454(2)	0.168(1)	0.439(1)	7.9(6)
C34	0.512(2)	0.217(1)	0.435(1)	6.4(5)
C35	0.462(2)	0.259(1)	0.388(1)	7.4(6)
C36	0.351(2)	0.2483(9)	0.347(1)	5.6(5)
C37	0.127(1)	0.2418(6)	0.2368(8)	3.1(3)
C38	0.038(2)	0.2818(8)	0.231(1)	4.7(4)
C39	0.031(2)	0.3278(9)	0.181(1)	6.5(6)
C40	0.122(2)	0.3298(8)	0.136(1)	5.9(5)
C41	0.210(2)	0.2898(9)	0.137(1)	5.5(5)
C42	0.216(2)	0.2434(7)	0.1854(9)	4.5(4)
C43	0.068(2)	0.0077(7)	0.4057(9)	4.2(4)
C44A	0.287(2)	-0.004(1)	0.464(1)	6.4(6)
C44	0.161(2)	- 0.0357(9)	0.448(1)	5.1(5)
C45	0.138(2)	-0.0898(7)	0.480(1)	5.6(5)
C46	0.028(2)	-0.1145(8)	0.468(1)	6.3(6)
C47	-0.068(2)	-0.0881(8)	0.431(1)	5.7(5)
C48A	-0.153(2)	-0.003(1)	0.355(1)	5.9(5)
C48	-0.053(2)	-0.0319(8)	0.397(1)	4.7(4)
C49	0.405(1)	0.0509(7)	0.1943(9)	3.7(4)
C50	0.423(2)	0.0585(7)	0.1230(9)	3.7(4)
C50A	0.358(2)	0.1051(9)	0.078(1)	5.9(5)
C51	0.505(2)	0.0233(8)	0.093(1)	4.6(4)
C52	0.572(2)	-0.020(1)	0.133(1)	6.4(6)
C53	0.557(2)	-0.0267(9)	0.205(1)	5.2(5)
C54	0.477(1)	0.0077(9)	0.236(1)	4.6(4)
C54A	0.465(2)	0.003(1)	0.317(1)	6.2(6)
C55	-0.131(1)	0.1461(7)	0.1555(9)	3.3(3)
C56	-0.242(1)	0.1542(7)	0.183(1)	4.3(4)
C56A	-0.294(2)	0.1138(8)	0.234(1)	5.0(5)
C57	-0.312(2)	0.2028(8)	0.157(1)	4.9(4)
C58	-0.273(2)	0.2374(9)	0.108(1)	5.7(5)
C59	-0.166(2)	0.2293(8)	0.079(1)	6.1(5)
COUA	0.023(2)	0.1660(9)	0.067(1)	5.2(5)
	-0.090(1)	0.1798(7)	0.1022(9)	3.5(3)

Table 6			
Selected bond	lengths	(Å) and angles	(°) for
[Re(DMT) ₃ (PPh ₃)	(PHPh ₂)]		
Bond lengths			
Re-S(1)	2.261(4)	Re-S(3)	2.255(4)
Re-S(4)	2.258(4)	Re-P(1)	2.370(4)
Re-P(5)	2.455(4)		
Bond angles			
S(1)-Re-S(3)	113.9(2)	S(1)–Re–S(4)	124.4(2)
S(1)-Re- $P(1)$	84.4(1)	S(1)-Re-P(5)	103.6(2)
S(3)-Re-S(4)	121.6(1)	S(3)–Re–P(1)	96.8(2)
S(3)-Re-P(5)	83.2(1)	S(4)–Re–P(1)	92.0(2)
S(4)-Re-P(5)	80.6(1)	P(1)ReP(5)	171.3(1)
Re-S(1)-C(55)	122.0(6)	Re-S(3)-C(43)	121.6(5)
Re-S(4)-C(49)	123.6(6)		

approximate square pyramidal structure with four equivalent DMT ligands as in the analogous $[\text{ReO}(\text{SAr})_4]^-$ (SAr = TIPT, TIMT, DIPT) [1]. One *ortho*-methyl on each DMT aryl ring is *syn* to the apical oxo group, with the other *anti*.

Compound IV has an IR band at 2320 cm⁻¹ assigned to ν (P–H). The ³¹P{¹H} NMR spectrum of IV shows doublets at δ 11.59 ppm due to PPh₃ and δ – 11.745 ppm due to PHPh₂, with a coupling constant J(P–P) = 254.9 Hz. This value is typical for *trans* phosphine ligands. The Me groups of the thiolate ligands appear as singlets at 1.86, 2.30, 2.48 ppm (ratio 1:1:1) in the ¹H NMR spectrum, rather than the two singlets ratio 2:1 expected for the two up one down configuration. The integral ratios for the methyl and phenyl resonances were consistent with the proposed formulation. The observed pattern for the methyl groups presumably arises from inequivalence of the methyls of the thiolate ligand adjacent to the PPh₃ group.

4. Conclusions

The intermediate $[\text{ReO}(\text{DMT})_3(\text{PPh}_3)]$ in the substitution reaction of $[\text{ReOCl}_3(\text{PPh}_3)_2]$ with DMT anion can be isolated by the use of Me₃SiDMT and exhibits significant differences both in structural geometry and chemical behaviour from $[\text{ReO}(\text{DMT})_4]^-$. The synthesis of $[\text{Re}(\text{DMT})_3(\text{PPh}_3)(\text{PHPh}_2)]$ demonstrates that the M(SAr)₃ core (SAr = sterically hindered aromatic thiolate) can in fact accommodate both the bulky PPh₃ and another moderately sized PHPh₂ ligand in the axial sites.

Acknowledgements

We thank the Committee of Vice-Chancellors and Principals for providing Jin Hu with an ORS award, Hermann Starck GMBH, Berlin, for a generous gift of rhenium powder, Courtaulds plc, Manchester for kindly providing samples of DMTH, and the Royal Society for the award of a K.C. Wong fellowship to S.-X. Liu.

References

- [1] P.J. Blower and J.R. Dilworth, *Inorg. Chim. Acta, 90* (1984) L27.
- [2] J. Chatt and G.A. Rowe, J. Chem. Soc. A, (1962) 4019.
- [3] J. Chatt and R.S. Coffey, J. Chem. Soc. A, (1969) 1963.
- [4] E.L. Muetterties and L.J. Guggenberger, J. Am. Chem. Soc., 96 (1974) 1748.
- [5] T.A. Hamor, W. Hussain, C.J. Jones, J.A. McCleverty and A.S. Rothin, *Inorg. Chim. Acta*, 146 (1988) 181.

- [6] J.R. Dilworth, B.D. Neaves, J.P. Hutchinson and J.A. Zubieta, *Inorg. Chim. Acta*, 65 (1982) L223.
- [7] R.J. Burt, J.R. Dilworth and G.J. Leigh, J. Chem. Soc., Dalton Trans., (1982) 2295.
- [8] D.M. Berg and P.R. Sharp, Inorg. Chem., 26 (1987) 2959.
- [9] N.D. Vries, A.G. Jones and A. Davison, *Inorg. Chem.*, 28 (1989) 3728.
- [10] N.D. Vries, C.E. Costello, A.G. Jones and A. Davison, *Inorg. Chem.*, 29 (1990) 1348.
- [11] J.E. Drake, J. Vekris and J.S. Wood, J. Chem. Soc. A, (1968) 1000.
- [12] A.R. Rossi and R. Hoffmann, Inorg. Chem., 14 (1975) 365.
- [13] J.R. Dilworth, J. Hutchinson and J. Zubieta, J. Chem. Soc., Chem. Commun., (1983) 1034.
- [14] P.T. Bishop and J.R. Dilworth, J. Chem. Soc., Dalton Trans., (1986) 967.
- [15] D. Baudry, M. Ephritikine and H. Felkin, J. Organomet. Chem., 224 (1982) 363.